

เอกสารประกอบการสอน

วิชา ศ. 325

การใช้โปรแกรม EViews ร่วมกับ Gujarati, D. <u>Basic Econometrics</u>. 4th edition. 2003.

โดย

อ. เฉลิมพงษ์ คงเจริญ

chaleampong@econ.tu.ac.th

คณะเศรษฐศาสตร์ มหาวิทยาลัยธรรมศาสตร์

ก.พ. 2547

งานนี้ใช้<u>สัญญาอนุญาตครีเอทีฟคอมมอนส์ แสดงที่มา-ไม่ใช้เพื่อการค้า-ไม่คัดแปลง 3.0 ประเทศ</u> <u>ไทย</u> คุณมีเสรีภาพที่จะทำสำเนา แจกจ่าย และส่งเอกสารฉบับนี้ ภายใต้เงื่อนไข แสดงที่มา ไม่ใช้เพื่อ การค้า และไม่คัดแปลง

0. บทนำ พื้นฐานเกี่ยวกับโปรแกรม EViews และ objects

โปรแกรม EViews ถูกออกแบบมาให้ทำงานในลักษณะของ objects ซึ่งในการทำงานของเราก็จะ สัมพันธ์กับ objects เหล่านี้ โดยที่แต่ละ objects ก็จะมีข้อมูลและลักษณะงานที่แตกต่างกัน ซึ่ง objects ที่ สำคัญที่สุดในโปรแกรมนี้ก็คือ workfile (แฟ้มงาน) ซึ่งในการทำการวิเคราะห์ใดๆก็ตาม เราจำเป็นต้อง สร้าง หรือเปิด workfile ขึ้นมาก่อน โดยที่ชนิด objects ต่างๆจะบ่งบอกถึงลักษณะของการทำงานซึ่ง แตกต่างกัน เช่น series (อนุกรม) ก็จะเกี่ยวข้องกับข้อมูล equation (สมการ) ก็จะเกี่ยวข้องกับความสัมพันธ์ ระหว่างตัวแปร เป็นต้น โดยในแฟ้มงานหนึ่งๆอาจมีสมการหลายสมการ ซึ่งเราสามารถเรียกกลับมาใช้ได้ เมื่อต้องการ (โดยทำการ double click ที่ objects สมการ) ดังนั้นเราจึงควรจัดการ objects ให้เข้าใจง่าย เพื่อ ประโยชน์ในการวิเคราะห์ผล ทดสอบสมมุติฐาน หรือ ทำนายค่า

objects พื้นฐานในโปรแกรม EViews ได้แก่ workfiles series และ equation นอกจากนี้ยังมี objects อื่นๆที่ทำหน้าที่เฉพาะด้าน โดยสรุปแล้ว objects ใน EViews จะประกอบด้วย Coefficient Vector, Databases, Equation, Graph, Group, Model, Pool (Time series/ Cross-section), Sample, Series, State Space, System, SYM(Symmetric Matrix), Table, Text, VAR(Vector Autoregression), Vector/Row, และ Vector Scalar ซึ่ง objects เหล่านี้ ยกเว้น Workfiles และ Databases จะมี icons ของตัวเอง เมื่อเราเปิด workfile ใหม่ขึ้นมาทำงาน ในหน้าต่างนั้นจะมี objects สองชนิดเปิดขึ้นมาเสมอ คือ Coefficient Vector (ซึ่งสมาชิกทุกตัวเท่ากับ 1) กับ residual series (ซึ่งสมาชิกทุกตัวเท่ากับ NA's)

เพื่อสร้าง objects ใหม่ เราจะเลือก **Objects/New Object** จาก main menu หรือ workfile menu แล้วเลือกชนิดของ objects ที่เราต้องการ ตั้งชื่อ แล้ว คลิก **OK**

เครื่องหมายทางคณิตศาสตร์ในโปรแกรม EViews:

ในโปรแกรม EViews จะบรรจุเครื่องหมายและพึงก์ชันทางคณิตศาสตร์ไว้มากมาย ในขณะที่ แป้นพิมพ์มีจำนวนจำกัด โดยที่ผู้ใช้สามารถดูได้จาก Function Reference ในเมนู Help นอกจาก เครื่องหมายทางคณิตศาสตร์และสถิติมาตรฐานแล้ว EViews ยังได้สร้างพึงก์ชันพิเศษสำหรับข้อมูล อนุกรมเวลา (time series) ทั้งหลายเช่น leads, lags และ differences ไว้อีกด้วย

โปรแกรม Eview จะปฏิบัติตามกำสั่งจากซ้ายไปขวา โดยที่เกรื่องหมายต่างๆจะมีลำดับ ความสำคัญดังนี้

- 1. ^ (ยกกำลัง)
- 2. * (คูณ), / (หาร)
- 3. + (บวก), (ถบ)
- 4. <(น้อยกว่า), > (มากกว่า), <= (น้อยกว่าหรือเท่ากับ), >= (มากกว่าหรือเท่ากับ), = (เท่ากับ)
- 5. and, or

หากต้องการดูเครื่องหมายหรือฟังก์ชันทั้งหมด ให้คลิก Help/Function Reference

พื้นที่ต่างในหน้าต่างหลักของโปรแกรม EViews

1. พื้นฐานเบื้องต้นของการวิเคราะห์การถดถอยเชิงเส้นโดยใช้ EViews

เพื่อให้นักศึกษาได้เห็นภาพของการใช้โปรแกรม EViews ควบคู่ไปกับเนื้อหาที่เรียน ผู้เขียนจะ ใช้ตัวอย่างจากหนังสือ Gujarati, 2003. *Basic Econometrics*. 4th edition. เริ่มต้นด้วยตัวอย่าง เกี่ยวกับ รายได้ กับการใช้จ่ายเพื่อการบริโภค (Gujarati ตารางที่ 2.4, หน้า 48) ซึ่งสามารถเขียนเป็น ความสัมพันธ์เชิงเส้นตรงได้โดย $Y_i = \beta_1 + \beta_2 X_i + u_i$ โดยที่ Y คือ ค่าใช้จ่ายในการบริโภค และ X คือ รายได้

ในการวิเคราะห์ความสัมพันธ์ด้วยโปรแกรม EViews ต้องเริ่มจากการสร้างแฟ้มงานเพื่อเก็บ ข้อมูลที่จะใช้ศึกษาและผลการศึกษาที่ได้ดังจะแสดงในหัวข้อที่ 1

1.1 การสร้างแฟ้มงาน (workfile) EViews

ขั้นตอนที่ 1. เลือก File/New/Workfile ในเมนูหลัก (main menu) ของ EViews

จะได้กล่องใส่ลักษณะของข้อมูลที่ใช้ศึกษา (Workfile Range Box)

- ขึ้นตอนที่ 2. ตั้งความถึ่ (frequency)ของข้อมูล ซึ่งอาจ เป็นข้อมูลอนุกรมเวลา รายปี, ราย ครึ่งปี, ..., รายวัน และข้อมูล ภาคตัดขวาง หรือมีการจัดเรียงไม่ ปกติ เช่นกรณีนี้ เราจะเลือก <u>U</u>ndated irregular
- **ขั้นตอนที่ 3.** นอกจากนี้ เรายังต้องให้ ขอบเขตของข้อมูล ทั้งจุดเริ่มต้น ของข้อมูล(Start observation)

Workfile Range		
Frequency Annual Semi-annual Quarterly Monthly	 Weekly Daily [5 day weeks] Daily [7 day weeks] Undated or irregular 	OK
Range Start observation	End observation	Cancel

และ จุคสิ้นสุดของข้อมูล (End observation) ด้วย ในกรณีของข้อมูลภาคตัดขวาง ก็ให้ใส่จำนวน ตัวอย่าง เช่น กรณีนี้ คือจาก 1 ถึง 10

ขั้นตอนที่ 4. หลังจากเลือกความถี่และช่วงของแฟ้มงาน ที่สอดกล้องกับข้อมูลของเราแล้ว ก็กลิก OK EViews ก็จะสร้างแฟ้มงาน ซึ่งยังไม่มีชื่อ (UNTITLED) และแสดงหน้าต่างแฟ้มงานในพื้นที่ ทำงาน ซึ่งในหน้าต่างแฟ้มงาน จะปรากฏตัวเลขสองตัว คือ ช่วง (range) และ ตัวอย่าง (sample) ซึ่งเราสามารถเปลี่ยนแปลงได้ นอกจากนี้เรายังสังเกตได้ว่าแฟ้มงานใหม่จะมี object 2 อันปรากฏอยู่ คือ coefficient vector 'c' หรือ เวคเตอร์ก่าคงที่ กับ residual series 'resid'

🚥 Workfile: UN	FITLED	
View Procs Objects	Save Label+/- Show Fetch	n Store Delete Genr Sample
Range: 1 10 Sample: 1 10	Filter: *	Default Eq: None
⊠ c ⊠ resid		
	k,	

ขั้นตอนที่ 5. เพื่อเก็บ (save)แฟ้มงาน ที่เราได้สร้างขึ้น ให้เลือก Save ในเมนูของแฟ้มงาน หรือ File/Save หรือ File/Save As ในเมนูหลัก และ ใส่ชื่อ coninc.wf1 ในช่อง File name และ เลือก drive ที่เราต้องการเก็บข้อมูลไว้ แล้วคลิก OK

1.2 การใส่ข้อมูลลงในแฟ้มงาน (workfile) EViews

ขั้นตอนที่ 1. เพื่อสร้างชุดของข้อมูล (Series) ใหม่สำหรับตัวแปร การใช้ง่ายเพื่อการบริโภค ต่อสัปดาห์ (Y) เลือก Object/New Object/Series จากเมนูหลัก หรือ เมนูแฟ้ม งาน แล้วใส่ชื่อ 'Y' ในช่อง Name of Object แล้วกลิก OK จะปรากฏ object 'Y' ในพื้นที่ทำงาน ซึ่งสมาชิกทุกตัวในชุด ข้อมูลใหม่นี้เป็น NA (Not Available)

ew Object	
Type of object Series Equation Graph Group LogL Matrix-Vector-Coef Model Pool Sample Series Sspace System Table Text VAR	Name for object

ขั้นตอนที่ 2. เพื่อจะใส่ข้อมูลให้ชุดข้อมูลนี้ ให้

double-click ที่ชุดข้อมูล Y จะปรากฎหน้าต่างของชุดข้อมูล เนื่องจากโดยปกติโปรแกรมจะ ป้องกันการแก้ไขโดยบังเอิญ จึงไม่สามารถกรอกขอ้มูลได้ทันที ต้องคลิก Edit+/- ในเมนูชุดข้อมูล แล้วใส่ข้อมูลจากตาราง 2.4 ลงในหน้าต่างดังกล่าว แทนที่ NA เมื่อเสร็จแล้วให้ แล้วคลิก Edit+/- เป็นการเก็บข้อมูลดังกล่าว และออกจากการแก้ไขข้อมูล ปิดหน้าต่างดังกล่าวโดยคลิก 🔀 บนมุมบน ขวาของหน้าต่างชุดข้อมูล

🛄 Serie	es: Y Workfi	le: CONINC				×
View Pro	ocs Objects Pri	int Name Freeze	Transform Edi	t+/- Smpl+/- Lab	el+/· Wide+· Ir	nsDe
			Y			
	L	.ast updated: 1	1/21/03 - 03:29	9		^
1	70.00000					
2	65.00000					
3	90.00000					
4	95.00000					
5	110.0000					

ขั้นตอนที่ 3. ทำกระบวนการดังกล่าวซ้ำกับตัวแปร รายได้ต่อสัปดาห์ (X)

้ **ขั้นตอนที่ 4.** เพื่อเก็บการเปลี่ยนแปลงคังกล่าวที่เกิคขึ้นในแฟ้มงานให้ คลิก Save บนเมนูแฟ้มงาน

ข้อมูลส่วนใหญ่ที่เรานำมาใช้มักจะเป็นข้อมูลทุติยภูมิซึ่งอยู่ในรูปไฟล์ตารางข้อมูล (spreadsheet file) หรือไฟล์ตัวอักษร (ASCII text file) ที่เราสามารถนำเข้า (import) ข้อมูล ดังกล่าวมาสู่แฟ้มงานได้เลย ซึ่งกระบวนการดังกล่าวจะกล่าวถึงในบทต่อไป อย่างไรก็ตามผู้ใช้อาจใส่ ข้อมูลโดยการกรอกในตารางเปล่า โดยการกลิก Quick/Empty Group (Edit Series) เพื่อเปิด ตารางว่างแล้วกรอกข้อมูล หรือกัดลอก (copy) จากแฟ้ม spreadsheet อื่นๆ แล้ววาง (paste) ก็ได้ (ใน กรณีที่ข้อมูลไม่มากจนเกินไป)

ในบางกรณีเราอาจสร้างชุดข้อมูลใหม่จากข้อมูลชุดเดิม เช่น อนุกรมการบริโภคต่อรายได้ (Z=Y/X) เราสามารถสร้างชุดข้อมูล Z ได้โดยคลิก Quick/Generate Series หรือ คลิก Genr ใน เมนูแฟ้มงาน และพิมพ์สมการเอกลักษณ์ของข้อมูลชุดใหม่ เช่น

릚 E	View	s							
File	Edit	Objects	View	Procs	Quick	Options	Window	Help	
					Sam	nple			
		Workfile	: CON	INC - (Gen Sho	nerate Seri	es	5) 🗖 🗖 🗖
	View Rar	v <mark>Procs</mark> C)bjects 0	Save	Gra Emp	ph pty Group	(Edit Series	。 ;)	elete Genr Sample Default Eq: None
		nple: 1 1 c resid < /	U		Seri Gro Esti Esti	ies Statisti up Statisti mate Equa mate VAR	cs cs ation	*	

[Note: หัวข้อ Quick ใน Main Menu จะรวมคำสั่งที่ใช้บ่อยๆไว้]

1.3 การสร้างกลุ่มข้อมูล (group) ใน EViews

EViews มีเครื่องมือโดยเฉพาะในการทำงานกับกลุ่มข้อมูล (Group of series) ในที่นี้เราจะ สร้างกลุ่มข้อมูลที่ประกอบด้วยชุดข้อมูล X และ Y

้ขั้นตอนที่ 1. เปิดแฟ้มงาน 'coninc.wf1' โดยเลือก File/Open/Workfile ในเมนูหลัก

ขั้นตอนที่ 2. สร้าง object group สำหรับ X และ Y โดยกดปุ่ม Ctrl ค้างไว้ขณะเดียวกันใช้เมาส์ คลิก X และ Y แล้วเลือก Show จากเมนูแฟ้มงาน หรือ คลิกขวา เลือก Open/as Group

ขั้นตอนที่ 3. เพื่อตั้งชื่อกลุ่มข้อมูล ให้กลิก Name หรือ Object/Name บนเมนูกลุ่มข้อมูล และใส่ชื่อ GROUP01 ในช่อง Name to identify object แล้วกลิก OK

้ ขั้นตอนที่ 4. เพื่อเก็บการเปลี่ยนแปลงดังกล่าวที่เกิดขึ้นในแฟ้มงานให้ กลิก Save บนเมนูแฟ้มงาน

1.4 การสร้างกราฟด้วย EViews

ตามทฤษฎีการบริโภคของเคนส์บอกว่าเมื่อรายได้เพิ่มขึ้น คนจะบริโภคเพิ่มมากขึ้น ดังนั้นตัวแปร Y และ X น่าจะมีความสัมพันธ์เชิงบวก ในขั้นแรกเราอาจตรวจสอบความสัมพันธ์ดังกล่าวโดย plot ตัว แปรทั้งสองเพื่อพิจารณาความสัมพันธ์ด้วยสายตาก่อน

ขั้นตอนที่ 1. เปิดแฟ้มงาน 'coninc.wf1'

- **ขั้นตอนที่ 2.** เพื่อ plot ตัวแปร Y ต่อ X ให้เปิดชุดข้อมูลทั้งสองในหน้าต่างกลุ่มข้อมูล (เราใส่ตัวแปร X ก่อน Y เนื่องจาก EViews จะกำหนดให้ตัวแปรแรกในกลุ่มเป็นแกน 'X' และตัวแปรที่สองเป็น แกน'Y')
- ขั้นตอนที่ 3. เลือก View/Graph/Scatter/Scatter with Regression แล้ว คลิก OK จะได้รูปดัง ตัวอย่างข้างล่าง ซึ่งเหมือนกับรูปที่ 2.4 ในหน้า 48 (Gujarati) จะเห็นได้ว่าตัวแปร Y และ X มี ความสัมพันธ์เชิงบวก โดยที่ EViews จะใช้ Optimal-Linear Scaling เป็นค่าตั้งต้นของรูป

Group: UNTITLED	W	orkfile: CON	INC				×
Group Members		ame Freeze	Transform Ed	it+/-	Smpl+/-InsDel	ranspose 1	Title
Spreadsheet		Y					
Dated Data Table		70.0000		_			^
Graph	÷	Line					
Multiple Graphs	►	Bar					
Deseviative State		Spike					
Descriptive Stats	1	Scatter	l i		Simple Scatter		
N Way Tabulation		XY line	I	•	Scatter with Regre	ssion 📐	
N-Way Tabulation		Error Bar		Γ	Scatter with Neare	st NeigNbor	Fit
Correlations		High-Low (C)pen-Close)		Scatter with Kerne	l Fit	
Covariances Principal Components		Pie			XY Pairs	-	

ขั้นตอนที่ 4. ถ้าต้องการเปลี่ยนแปลงมาตราส่วนของรูปทำได้โดยการคลิกขวาที่ใดก็ได้ในรูปภาพ และ เลือก Options จะได้กล่อง Graph Options ซึ่งสามารถเปลี่ยนลักษณะของกราฟได้

Graph Options	? 🛛
Type General Axes & Scaling Legend Lines & Symb	ools Bars & Pies
Edit Axis: Left Axis and Scale	Series axis assignment #1 X 2 Left 3 Left C Left C Right C Top © Bottom
Left ticks & lines: Ticks outside axis Zero line Grid lines	Vertical axes labels Label both axes Duplicate left & right labels Undo Edits
ОК	Cancel Apply

เช่น การเปลี่ยนสเกลของแกน (Graph Scaling) เป็นแกนตั้ง (Left axis) ที่ผ่านจุดศูนย์ ให้คลิกที่ Axes & Scaling แล้วเลือก Linear-Force Through Zero ใน Left- Axis Scaling Method แล้วคลิก OK จะได้รูปข้างล่างทางขวามือ

2. วิธีการกำลังสองน้อยที่สุด (Ordinary Least Square Method)

การวิเคราะห์การถดถอยด้วยวิธีกำลังสองน้อยที่สุดถือเป็นแกนหลักของการวิเคราะห์เชิงเศรษฐ มิติ โดยที่เราจำเป็นต้องลองประมาณค่าสัมประสิทธ์ของการถดถอย โดยไม่ใช้ โปรแกรมทางสถิติสักครั้ง เพื่อที่จะเข้าใจกระบวนการทำงานของวิธีกำลังสองน้อยที่สุด ซึ่งกระบวนการดังกล่าวเราสามารถประมาณ ค่าแบบจำลองได้ง่ายด้วยโปรแกรมทางสถิติ เช่น EViews ในหัวข้อนี้เราจะประมาณค่าแบบจำลอง สมการถดถอยอย่างง่ายเพื่อให้เราเข้าใจกระบวนการทำงานของโปรแกรม EViews และสิ่งที่โปรแกรม แสดงผลออกมา

2.1 การคำนวณการถดถอยอย่างง่าย (Simple regression) [ตัวอย่างในหัวข้อ 3.6 ซึ่งใช้ข้อมูลใน ตารางที่ 2.4 ซึ่งเราได้สร้างขึ้นมาในหัวข้อที่แล้ว]

การประมาณค่าสมการถดถอยใน EViews สามารถเริ่มต้นได้หลายวิธี เช่นวิธีการแรก เราจะใช้ การสร้าง Object สมการใหม่ โดยที่มีกระบวนการดังนี้

ขั้นตอนที่ 1. เปิดแฟ้มงาน 'coninc.wf1' โดยเลือก File/Open/Workfile ในเมนูหลัก

ขั้นตอนที่ 2. เลือก Objects/New Object/Equation จากเมนูแฟ้มงาน [หรืออาจเลือก Quick/Estimate

Equation จากเมนูหลักก็ได้ ซึ่งจะปรากฏกล่องระบุรูปแบบ ของสมการ (Equation specification) แล้วข้ามไป ขั้นตอนที่ 4] ขั้นตอนที่ 3. ใส่ชื่อของสมการ

เช่น EQ01 ในช่อง <u>N</u>ame for Object แล้วคลิก OK จะปรากฎกล่องระบุรูปแบบ ของสมการ

Equation Specification	×
 Equation specification Dependent variable followed by list of regressors including ARM and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X. 	A
YCX	~
Estimation settings Method: LS - Least Squares (NLS and ABMA)	<u>0</u> K
<u>Sample:</u> 110	<u>C</u> ancel Options

ขั้นตอนที่ 4. ใส่ตัวแปรที่ใช้ในการประมาณค่าทั้งหมด พร้อมเวคเตอร์ของค่าคงที่ (c) ลงในช่อง Equation Specification โดยที่<u>ตัวแปรตัวแรกจะต้องเป็นตัวแปรตามเสมอ</u>เช่น การบริโภค (Y) แล้ว ตามด้วยตัวแปรอิสระ เช่น รายได้ (X)และ ค่าคงที่ (C) [หากมิได้เป็นการประมาณค่าที่ผ่านจุดศูนย์กลาง (Regression through origin)]

ขั้นตอนที่ 5. เลือกวิธีการที่ใช้ในการประมาณก่า ในช่อง <u>M</u>ethod ในกรณีนี้คือ LS – Least Square (NLS and ARMA) ซึ่งจะเป็นก่าตั้งต้นสำหรับทุกกรั้งที่เปิดหน้าต่างนี้ขึ้นมา

ขั้นตอนที่ 6. ในกรณีของข้อมูลอนุกรมเวลา ผู้ใช้อาจเลือกช่วงเวลาที่แตกต่างจากข้อมูลที่มีก็ได้ โดยการ เลือกขอบเขตของตัวอย่างที่ใช้ประมาณก่า (Sample) แล้วใส่ช่วงคังกล่าวในช่อง <u>S</u>ample เช่น ข้อมูลที่มี คือ 1960-2000 แล้วเราอาจต้องการศึกษาความสัมพันธ์ในช่วงปี 1980-2000 ให้เราใส่ '1980 2000' ใน ช่อง <u>S</u>ample แต่ในกรณีนี้ขอบเขตของตัวอย่างที่ใช้ในการประมาณก่า จะถูกคั้งในเท่ากับช่วงตัวอย่าง ของแฟ้มงาน แล้วคลิก **OK** เราจะได้ตารางผลการวิเคราะห์ถดถอยค้วยวิธีการกำลังน้อยที่สุดโดย โปรแกรม EViews และ object 'EQ01'

หากเลือกประมาณค่าด้วยกำสั่ง **Quick/Estimate** จะได้ object สมการที่ยังไม่มีชื่อ หากต้องการเก็บ สมการนั้นไว้ใช้ในอนาคต ให้คลิก **Name** ในเมนูของสมการ แล้วใส่ชื่อสมการ 'EQ01'

้ ขั้นตอนที่ 7. เพื่อเก็บการเปลี่ยนแปลงคังกล่าวที่เกิดขึ้นในแฟ้มงานให้ กลิก Save บนเมนูแฟ้มงาน

2.2 ส่วนประกอบต่างๆของหน้าต่างสมการใน EViews

EViews จะแสดงข้อมูลเชิงสถิติที่สำคัญที่เกี่ยวข้องกับการวิเคราะห์เชิงถดถอยส่วนใหญ่ไว้ใน หน้าต่างสมการ (ดังรูปข้างล่าง) ซึ่งประกอบด้วยข้อมูลทั่วไปในส่วนบน ก่าสัมประสิทธิ์และตัวสถิติที่ เกี่ยวข้องกับตัวแปรแต่ละตัวจะอยู่ส่วนกลาง และส่วนล่างจะประกอบด้วยสถิติโดยสรุป ส่วนแรก: ข้อมลทั่วไป

 ชื่อของตัว แปรตาม
 วิธีการที่ใช้
 วิเคราะห์
 วันเวลาที่ทำ การวิเคราะห์
 ช่วงของ
 ตัวอย่างที่ใช้ใน การวิเคราะห์
 จำนวน
 ด้วอย่างที่ใช้ใน
 การวิเคราะห์

Dependent Variable Method: Least Squ Date: 11/28/03 Tin Sample: 1 10 Included observatio	e: Y ares me: 02:43 ns: 10			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	24.45455 0.509091	6.413817 0.035743	3.812791 14.24317	0.0051 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.962062 d 0.957319 6.493003 337.2727 -31.78092 t 2.680127	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	ident var Jent var criterion terion stic)	111.0000 31.42893 6.756184 6.816701 202.8679 0.000001

6 (ถ้ามี) จำนวนตัวอย่างที่กันออกไป (excluded observation)

ส่วนที่สอง: ค่าสัมประสิทธิ์ ข้อมูลที่เกี่ยวข้องกับค่าสัมประสิทธิ์ที่ถูกประมาณขึ้น (Estimated coefficient) จะถูกรายงานในส่วนที่สอง โดยที่คอลัมน์แรกเป็นชื่อตัวแปร คอลัมน์ที่สองเป็นค่า สัมประสิทธิ์ ในขณะที่คอลัมน์ 3 – 5 เป็นค่า standard error of coefficient, t-statistics, Prob (P-value) ตามลำดับ ซึ่งค่าเหล่านี้มีความสำคัญต่อการทดสอบสมมุติฐาน ส่วนที่สาม: สถิติโดยสรุป สถิติที่สำคัญจะถูกแสดงในสี่คอลัมน์ข้างล่าง ซึ่งแต่ละตัวจะมีความหมายดังที่ สรุปไว้ข้างล่างและสามารถอ้างอิงได้จากหน้าใน Gujarati ซึ่งจะวงเล็บไว้ท้ายหัวข้อ

- R²: Coefficient of Determination คือสัดส่วนของความแปรปรวนของตัวแปรตามที่ สามารถอธิบายได้ด้วยตัวแปรอิสระ (p.217-219)
- 2. Adjusted R^2 : (p.217-219)
- 3. Standard Error of Regression หรือ Standard Error of Estimate: $\hat{\sigma} = \sqrt{\frac{\sum \hat{u}^2}{n-k}} (p.78)$
- 4. Sum of square resid: $\sum \hat{u}^2 \, \vec{\mathfrak{V}}_{\mathfrak{I}}$ OLS พยายามที่จะเลือกค่าสัมประสิทธิ์ที่ทำให้ค่านี้น้อย ที่สุด
- 5. Log likelihood: ใช้ประโยชน์ในการทดสอบสมมุติฐาน
- Durbin-Watson stat: ตัวสถิติที่ใช้ทดสอบ Serial Correlation ของ residual (p.467-472)
- 7. Mean dependent var: วัคแนวโน้มส่วนกลาง (ค่าเฉลี่ย) ของตัวแปรตาม
- 8. S.D. dependent var: วัดการกระจาย (ค่าเบี่ยงเบนมาตรฐาน) ของตัวแปรตาม
- 9. Akaike info criterion: ใช้ในการเลือกแบบจำลอง
- 10. Schearz criterion: ใช้ในการเลือกแบบจำลอง
- 11. F-statistic: ใช้ทคสอบสมมุติฐานว่าสัมประสิทธิ์ทุกตัวมีค่าเท่ากับศูนย์หรือไม่
- 12. Prob(F-statistic): ก่า p-value ของ F-statistic

2.3 การสร้างแฟ้มงานสำหรับตัวอย่างการใช้จ่ายเพื่อบริโภคในอินเดีย (ตัวอย่างที่ 3.2)

ตัวอย่าง 3.2 ศึกษาความสัมพันธ์ระหว่างค่าใช้จ่ายรวมและค่าใช้จ่ายเพื่อการบริโภค ซึ่งมี ความสัมพันธ์เชิงบวก โดยใช้ข้อมูลที่ปรากฏในตารางที่ 2.8 ในหน้า 56 ซึ่งมีตัวอย่างที่สุ่มมาจำนวน 55 ครัวเรือน และเราจำเป็นต้องสร้างแฟ้มงานขึ้นก่อน

ขั้นตอนที่ 1. เลือก File/New/Workfile ในเมนูหลัก

้ขั้นตอนที่ 2. ตั้งความถี่ของแฟ้มงานเป็น <u>U</u>ndated irregular

ขั้นตอนที่ 3. ใส่ Start observation (1) และ End observation (55)

้ขั้นตอนที่ 4. คลิก OK จะ ได้แฟ้มข้อมูลใหม่เพื่อทำงานกับกลุ่มตัวอย่างจำนวน 55 ตัวอย่าง

2.4 การนำเข้าข้อมูลจากโปรแกรม spreadsheet ต่างๆ

เมื่อเราสร้างแฟ้มงานแล้ว เราสามารถนำเข้าข้อมูลจากแฟ้มข้อมูลของโปรแกรม Spreadsheet อื่นๆ เช่น Excel ได้ง่าย แต่อย่างไรก็ตาม เราจำเป็นต้องทราบลักษณะของข้อมูล (เรียงตามแนวตั้งหรือ แนวนอน) ตำแหน่งของข้อมูล และจำนวนตัวแปรที่ด้องการนำเข้าในแฟ้มนั้นๆก่อน

ส่วนของการเก็บข้อมูล

ขั้นตอนที่ 1. เปิดโปรแกรม Excel และเปิดแฟ้ม ชื่อ Table2.8.xls

ขั้นตอนที่ 2. ข้อมูลตัวเลขชุดแรกอยู่ในเซลล์ B2 และมีข้อมูลอีกสองคอลัมน์ที่ติดกัน (ดังตัวอย่าง ข้างล่าง)

ขั้นตอนต่อไปเราก็จะนำข้อมูลดังกล่าวจากแฟ้ม Table2.8.xls เข้าสู่แฟ้ม EViews ใหม่ที่สร้าง ขึ้น

N 🔀	licro	soft E	xcel -	Table	2.	8 [R	ead	-On	y]
8	Eile	<u>E</u> dit	⊻iew	Inser	t	Form	nat	<u>T</u> oo	ls
D	2	R 🔒) 🔁	6	<u>ð</u> ,	ABC V	Ж	Đ	e
Aria	al			• 10	•	в	I	U	
	E7		•	f	÷				
	1	А,		В			С		
1	obs		FOOD	DEXP		TOT.	ALE	XP	
2		1		21	17			38	2
3		2		- 19	96			38	8
4		3		- 30	3			39	1
5		4		27	70			41	5
6		5		32	25			45	6

ส่วนของการนำเข้า

ขั้นตอนที่ 1. ปิดแฟ้ม
 Excel
 ขั้นตอนที่ 2. คลิก
 Procs/Import/Re
 ad Text-Lotus Excel บนเมนูแฟ้ม
 งาน
 ขั้นตอนที่ 3. เลือก
 drive และ folder

w 🚥	orkfile: UNTITLED	
View Ranı Sam ⊠c ∑re	Sample Change Workfile Range Generate Series Sort Series Extract to New Workfile	Show Fetch Store Delete Genr Sample er: * Default Eq: None
	Import V	Fetch from DB CBOC Online Databases TSD File Import DRI Basic Economics Database Read Text-Lotus-Excel

'Table2.8.xls'

ซึ่งเป็นที่อยู่ของแฟ้ม

ขั้นตอนที่ 4. เลือก Excle.xls ในช่อง <u>F</u>iles of type

ขั้นตอนที่ 5. คลิกสองครั้ง (double click) ที่ Table2.8.xls

ขั้นตอนที่ 6. ใส่ B2 ลงในช่อง Upper-left data cell และ งำนวนของ series ซึ่งเท่ากับสอง

(EViews จะใส่ชื่อ Series ดังกล่าวโดยนำมาจาก แถวบนของข้อมูล)

ขั้นตอนที่ 7. ช่วงของข้อมูลจะถูกตั้งตามตัวอย่างของแฟ้มงาน

ขั้นตอนที่ 8. คลิก **OK** เพื่อสิ้นสุดกระบวนการนำเข้าข้อมูล

Data order Upper-left data ce By Observation - series in columns By Series - series in rows	Excel 5+ sheet name
Names for series or Number if named in file	Export options Write date/obs C EViews date format C First calendar day C Last calendar day
Import sample Reset sample to: 1 55 Current sample Workfile range To end of range	Write series names ASCII-Text delimiter: C Tab C Space C Comma

การวิเคราะห์ถดถอยตามตัวอย่างที่ 3.2

หลังจากนำเข้าข้อมูลจะปรากฏ object อนุกรมใหม่ 2 อนุกรมคือ FoodExp และ TotalExp ซึ่งเราสามารถวิเคราะห์เชิงถดถอยได้ โดยการ

Workfile: UNTITLED							
View Procs Objects Save Label+							
Range: 155 F Sample: 155							
🛛 c							
🗹 foodexp							
🗹 resid							
🗠 totalexp 💦							
L}							

ขั้นตอนที่ 1. โดยกด Ctrl ด้างไว้ แล้วคลิก ตัวแปรทีละตัว เรียงลำดับจากตัวแปรตาม และตัวแปรอิสระ (โดยไม่ต้องใส่ก่ากงที่ เพราะ EViews จะตั้งให้เสมอ)

ขั้นตอนที่ 2. คลิกขวาขณะที่ ลูกศรอยู่บนแทบทึบสีน้ำเงิน เลือก Open/As Equation เราจะได้หน้าต่าง Equation Specification พร้อมตัวแปรที่เราใส่ไว้ และค่าคงที่ (c) แล้ว ดำเนินขั้นตอนต่อไปตามขั้นตอนที่ 5-7 ในหัวข้อ 2.1 (โดย save ใน

แฟ้มงานชื่อ indianfoodexp.wf1) จะได้ผลการประมาณก่าเหมือน ตัวอย่างที่ 3.2 หน้า 91

หรือเราอาจจะเขียนคำสั่ง "LS Foodexp c TotalExp" ในช่องคำสั่งก็ได้ โดยที่ LS คือคำสั่ง ให้ EViews ประมาณค่าด้วยวิธีการกำลังสองน้อยที่สุด โดยมี Foodexp เป็นตัวแปรตาม และที่เหลือเป็น ตัวแปรอธิบาย

Dependent Variable: FOODEXP Method: Least Squares Date: 12/03/03 Time: 01:01 Sample: 1 55 Included observations: 55							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
TOTALEXP	0.436809	0.078323	5.577047	0.0000			
C	94.20878	50.85635	1.852449	0.0695			
R-squared	0.369824	Mean dependent var		373.3455			
Adjusted R-squared	0.357934	S.D. dependent var		83.43510			
S.E. of regression	66.85575	Akaike info criterion		11.27864			
Sum squared resid	236893.6	Schwarz criterion		11.35163			
Log likelihood	-308.1625	F-statistic		31.10345			
Durbin-Watson stat	2.083299	Prob(F-statistic)		0.000001			

2.5 การแสดงผล Actual, Fitted, Residual

หลังจากที่เราประมาณค่าได้ผลดังตารางข้างต้นแล้ว เราสามารถกำนวณหาค่าที่กาดไว้ของตัวแปร ตามที่ขึ้นอยู่กับตัวแปรอิสระ (Conditional Expected value of Y:Ŷ) ซึ่งใน EViews เรียกว่า 'Fitted' แล้วนำมาเปรียบเทียบกับ ค่าตัวแปรตามจริง (actual Y) และหาความแตกต่างระหว่างสองก่านี้

เราก็จะได้ค่า 'Residual'

ขั้นตอนที่ 1. คลิก View/Actual, Fitted,

Residual/Actua	al,Fi	itted,Re	esidual
Table บนเมนูขอ	งสม	เการ จะไ	ด้ตาราง
แสดงค่า Actual	Y,	Fitted	$\mathrm{Y}(\hat{Y})$
และ Residual ดัง	รปข้	างถ่าง	

ขั้นตอนที่ 2. หากต้องการดูกราฟล่า ระหว่าง Actual Y, Fitted Y(\hat{Y}) และ Residual เราอาจเลือก คลิก View/Actual,Fitted,Residual /Actual,Fitted,Residual

Graph บนเมนูของสมการ จะได้ กราฟแสดงค่า Actual Y, Fitted $Y(\hat{Y})$ และ Residual ดังรูปข้างล่าง

		rquation	: EQUI	worki	te: INDIA	NFOODE	AP'	
	F	epresenta	tions		e Freeze	Estimate	Forecast :	State
,	E	stimation (Dutput	_	~~~			
	- A	Actual, Fitte	d,Residual	▶	Actual, F	itted,Resid(ual Table	
l	6	Gradients a	nd Derivat	ives 🕨	Actual, F	itted,Resid(ual Graph	
		Iovariance	Matrix		Residual	Graph		
			T		Standard	dized Residu	ual Graph	
)		Loerricienc		1				
		(esidual Te. Jability Ter	sts		efficient	Std. Err	or t-St	tatis
		Cability res	,(5					_
1	L	abel			436809	0.07832	23 5.5	770
								~ _
111	Enus	tion: FOO:	Worldfil	AT IND IAN	IEOODEVD			
	Equa	tion: EQO	Workfil	e: INDIAN	IFOODEXP			X
Uie Vie	Equa w Pro	ation: EQO acs Objects	Workfil Print Name	e Freeze	IFOODEXP Estimate For	ecast Stats F	E C	
Vie 0	Equa w Pro bs	ation: EQO acs Objects Actual	Vorkfil Print Name Fitted	e: INDIAN e Freeze Residua	IFOODEXP Estimate Fore	ecast Stats F Residual Pl	Resids lot	
Vie 0	Equa w Pro bs 1	ation: EQ0 ocs Objects Actual 217.000	Print Name Fitted 261.070	e: INDIAN Freeze Residua -44.0697	IFOODEXP Estimate For I F	ecast Stats F Residual Pl	Resids Iot	
Vie 0	Equa w Pro bs 1 2	ation: EQ01 ocs Objects Actual 217.000 196.000	Workfil Print Name Fitted 261.070 263.691 1000	e: INDIAN Freeze Residua -44.0697 -67.6908	IFOODEXP Estimate Form	ecast Stats F Residual PI	Resids Iot	
Vie 0	Equa w Pro bs 1 2 3	ation: EQ01 pcs Objects Actual 217.000 196.000 303.000	Vorkfil Print Name Fitted 261.070 263.691 265.001	e: INDIAN Freeze Residua -44.0697 -67.6908 37.9990	IFOODEXP Estimate Form	ecast Stats F Residual PI	Resids I I I	
	Equa w Pro bs 1 2 3 4	ation: EQ0 CS Objects Actual 217.000 196.000 303.000 270.000	Workfil Print Name Fitted 261.070 263.691 265.001 275.484	e: INDIAN Freeze -44.0697 -67.6906 37.9990 -5.48441	IFOODEXP Estimate Form	ecast Stats F Residual Pl	Resids	
Vie	Equa w Pro bs 1 2 3 4 5	ation: EQ01 cs Objects Actual 217.000 196.000 303.000 270.000 325.000	Vorkfil Print Name 261.070 263.691 265.001 275.484 293.394	e: INDIAN Freeze -44.0697 -67.6908 37.9990 -5.48441 31.6064	IFOODEXP Estimate For I F	ecast Stats F Residual PI	Resids	
Vie 0	Equa bs 1 2 3 4 5 6	Action: EQ01 Actual 217.000 196.000 303.000 270.000 325.000 260.000 300.000	Workfil Print Name Pitted 261.070 263.691 265.001 275.484 293.394 295.141 141	e: INDIAN Residua -44.0697 -67.6908 37.9990 -5.48441 31.6064 -35.1408	IFOODEXP Estimate For I F i	ecast Stats F Residual PI	Aesids	
	Equa w Pro bs 1 2 3 4 5 5 6 7	Ation: EQ01 Actual 217.000 196.000 303.000 270.000 325.000 260.000 300.000	Workfil Print Name 261.070 263.691 265.001 275.484 293.394 295.141 300.383	e: INDIAN Residua -44.0697 -67.6908 37.9990 -5.48441 31.6064 -35.1408 -0.38251	IFOODEXP Estimate For I F	ecast Stats F Residual PI	Aesids O	
	Equa w Pro bs 1 2 3 4 5 6 7 8	Action: EQ0* Actual 217.000 196.000 303.000 270.000 325.000 260.000 300.000 325.000	Workfil Print Name Fitted 261.070 263.691 265.001 265.001 275.484 293.394 295.141 300.383 303.003	e: INDIAN Freeze -44.0697 -67.6908 37.9990 -5.48441 31.6064 -35.1408 -0.38251 21.9968	IFOODEXP Estimate For I F 5 5 1 5	ecast Stats F Residual PI	Aesids I	

เฉลิมพงษ์ คงเจริญ

Equation: EQ01 Worl	cfile: INDIANFOODEXP	Equation: EQ01 Workfile: INDIANFOODEXP
Representations	e Freeze Estimate Forecast Stat	View Procs Objects Print Name Freeze Estimate Forecast Stats Resids
Estimation Output		700
Actual, Fitted, Residual	Actual,Fitted,Residual Table	
Gradients and Derivatives Covariance Matrix	Actual,Fitted,Residual Graph	200- 100- 100-
Coefficient Tests	Standardized Residual Graph	0 MW MMM MMALL 100
Residual Tests Stability Tests	, əfficient Std. Error t-Stati	
Label	436809 0.078323 5.577	0 10 10 20 20 30 36 40 40 00 00

2.6 การสร้างอนุกรมของ Residual

ในการวิเคราะห์ผลและตรวจสอบผลการประมาณค่าที่เราจะศึกษาต่อไปอาจต้องใช้ข้อมูล เกี่ยวกับ Residual ของสมการถคถอยเชิงเส้น ซึ่งอนุกรมดังกล่าวจะเปลี่ยนแปลงไปทุกครั้งเมื่อมีการ

ประมาณค่าสมการใหม่ ดังนั้นเราจึงควรสร้าง อนุกรม Residual สำหรับสมการนั้นๆไว้เพื่อ ประโยชน์ใน การวิเคราะห์

ขั้นตอนที่ 1. คลิก Procs/Make Residual Series จะได้หน้าต่าง Make Residuals ขึ้นมา

ขั้นตอนที่ 2. ใส่ชื่ออนุกรม เป็น resi01 (เพื่อให้ สอดคล้องกับ EQ01) ในช่อง Name for resid series

จะใด้อนุกรมใหม่ ชื่อ Resid01 พร้อมทั้งกราฟ แสดงการกระจายและสถิติ ดังรูปในหน้า 150

E E	quation: EQ01 Workfile: IND	IANFOODEXP
View	Specify/Estimate Forecast	e Estimate For
Dep Met	Make Residual Series	
Dati	いMake Regressor Group Make Gradient Group	
San	Make Derivative Group	
	Make Model	
	Update Coefs from Equation	Std. Error

Make Residuals	X
Residual type C Ordinary C Standardized C Generalized	ОК
Name for resid series	Cancel

2.7 การเลือกรูปแบบฟังก์ชัน (Functional form)

ในแบบจำลองที่เราประมาณล่าในตัวอย่างข้างต้นเราสมมุติว่าตัวแปรตามและตัวแปรอธิบายมี ความสัมพันธ์เชิงเส้นตรง อย่างไรก็ตามรูปแบบของฟังก์ชันที่เหมาะสมสำหรับการประมาณล่าจะต้อง สอดกล้องกับทฤษฎีหรือข้อมูล ดังนั้นการระบุรูปแบบให้โปรแกรมทราบก็มีความแตกต่างกัน ดังตาราง ข้างล่างซึ่งนำมาจากตารางที่ 6.6

แบบจำลอง	สมการ	EViews specification
Linear	$Y = \beta_1 + \beta_2 X$	YCX
Log-linear	$\ln Y = \beta_1 + \beta_2 \ln X$	$\log(Y) C \log(X)$
Log-lin	$\ln Y = \beta_1 + \beta_2 X$	log(Y) C X
Lin-log	$Y = \beta_1 + \beta_2 \ln X$	Y C log(X)
Reciprocal	$Y = \beta_1 + \beta_2 \left(\frac{1}{X}\right)$	Y C 1/X
Log reciprocal	$\ln Y = \beta_1 - \beta_2 \left(\frac{1}{X}\right)$	log(Y) C 1/X

3. ปัญหา Multicollinearity

3.1 Perfect multicollinearity

ในกรณีที่ตัวแปรอธิบายตั้งแต่สองตัวมีความสัมพันธ์เชิงเส้นอย่างสมบูรณ์ (perfectly collinear) โปรแกรม EViews จะไม่สามารถประมาณค่าสัมประสิทธิ์ของสมการเชิงถคถอยได้ ซึ่งหากเกิดเหตุการณ์ ดังกล่าว โปรแกรมจะส่งข้อความออกมาว่า "Near singular matrix"

อย่างไรก็ตามโดยทั่วไปในการศึกษาเชิงเศรษฐมิติด้วยข้อมูลจริง เรามักเผชิญกับปัญหา Multicollinearity ซึ่งมีความรุนแรงต่างกันไป ดังนั้นในหัวข้อต่อไปเราจะอธิบายวิธีการที่เราใช้ตรวจสอบ ความรุนแรงของปัญหา multicollinearity โดยใช้ตัวอย่างในหัวข้อ 10.10 (Gujarati, หน้า 370) ซึ่งใช้ข้อมูล จากตารางที่ 10.7

3.2 การตรวจสอบปั้ญหา multicollinearity ด้วย simple correlation coefficients

จากหัวข้อคังกล่าว เราวิเคราะห์ผลของตัวแปรอธิบายต่างๆ(X₁, X₂, X₃, X₄, X₅, Time) ต่อการ จ้าง งาน (Y) โดยใช้สมการถดถอยเชิงเส้น

$$Y_{i} = \beta_{0} + \beta_{1}X_{1,i} + \beta_{2}X_{2,i} + \beta_{3}X_{3,i} + \beta_{4}X_{4,i} + \beta_{5}X_{5,i} + \beta_{6}Time_{i} + u_{i}$$

ขั้นตอนที่ 1. เปิด workfile ที่มีข้อมูลดังกล่าวอยู่ชื่อ 'table10.7.wf1' แล้ว run regression ระหว่าง Y กับ ค่าคงที่ , X, X, X, X, X, Time ได้ผลดังตารางข้างล่าง

Dependent Variable: Y Method: Least Squares Date: 01/26/04 Time: 01:13 Sample: 1947 1962 Included observations: 16							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
X1	1.506187	8.491493	0.177376	0.8631			
X2	-0.035819	0.033491	-1.069516	0.3127			
X3	-2.020230	0.488400	-4.136427	0.0025			
X4	-1.033227	0.214274	-4.821985	0.0009			
X5	-0.051104	0.226073	-0.226051	0.8262			
TIME	1829.151	455.4785	4.015890	0.0030			
C	77270.12	22506.71	3.433204	0.0075			
R-squared	0.995479	Mean dependent var		65317.00			
Adjusted R-squared	0.992465	S.D. dependent var		3511.968			
S.E. of regression	304.8541	Akaike info criterion		14.57718			
Sum squared resid	836424.1	Schwarz criterion		14.91519			
Log likelihood	-109.6174	F-statistic		330.2853			
Durbin-Watson stat	2.559488	Prob(F-statistic)		0.000000			

จากตารางดังกล่าวเราสังเกตเห็นว่า ก่า R² ก่อนข้างสูง แต่ก่า t-stat ของตัวแปรบางตัวเช่น X₁, X₂, X₅ ไม่มี นัยสำคัญ ซึ่งเป็นสัญญาณหนึ่งของปัญหา Multicollinearity ดังนั้นเราจึงต้องการทดสอบเบื้องต้นด้วย วิธีการอื่นว่าแบบจำลองมีปัญหา multicollinearity หรือไม่ ซึ่งในที่นี้ใช้ *Pair-wise correlation* (การหา สหสัมพันธ์ระหว่างตัวแปรอธิบายเป็นกู่ๆ)

ขั้นตอนที่ 2. สร้างกลุ่มของตัวแปรอธิบายโดยการเลือก Proc/Make Regressor Group ในเมนูของสมการ จะได้กลุ่ม (group) ของตัวแปรอธิบาย

			Group: UNTITLED	W	orkfile: TABI	LE10.7
	quation: UNTITLED Workfile	: TAB	Group Members		ame Freeze	Transform
View	Specify/Estimate	e Es	Spreadsheet		X1	X
	Forecast		Dated Data Table		830.0000	2342
Dep Make Residual Series Met Make Begresser Group		Graph	►	885.0000	2594	
		Multiple Graphs	•	882.0000	2580	
Date	Make Cradient Croup		Descriptive Stats	•	895.0000	2845
San Make Gradient Group NS Incli Make Derivative Group Make Model		Tests of Equality		962.0000	3289	
	Make Derivative Group		N-Way Tabulation		981.0000	3469
	Make Model Undate Coefs from Equation		Correlations	Þ	Common Sa	mple
	opdate coers nom Equation	j St	Covariances	►	Pairwise Sar	mples

ขั้นตอนที่ 3. เลือก View/Correlation/Pairwise Samples จากเมนูของกลุ่ม จะได้ตาราง Correlation Matrix ดังตารางข้างล่างเหมือนกับตารางที่ 10.8

Group: UNTITLED Workfile: TABLE10.7								
View Procs Ob	View Procs Objects Print Name Freeze Sample Sheet Stats Spec							
			Correla	tion Matrix				
	Y	X1	X2	X3	X4	X5	TIME	
Y	1.000000	0.970899	0.983552	0.502498	0.457307	0.960391	0.971329	
X1	0.970899	1.000000	0.991589	0.620633	0.464744	0.979163	0.991149	
X2	0.983552	0.991589	1.000000	0.604261	0.446437	0.991090	0.995273	
X3	0.502498	0.620633	0.604261	1.000000	-0.177421	0.686552	0.668257	
X4	0.457307	0.464744	0.446437	-0.177421	1.000000	0.364416	0.417245	
X5	0.960391	0.979163	0.991090	0.686552	0.364416	1.000000	0.993953	
TIME	0.971329	0.991149	0.995273	0.668257	0.417245	0.993953	1.000000	

ขั้นตอนที่ 4. เลือก Freeze ในเมนูของกลุ่ม จะได้ object ตาราง แล้วเลือก Name เพื่อจัดเก็บตารางดังกล่าว วิธีการอ่านค่า หากต้องการดูค่าสหสัมพันธ์ระหว่าง X₁ และ X₂ ให้พิจารณาในช่องที่อยู่ในคอลัมน์ X₁ กับแถว X, หรือคอลัมน์ X, กับแถว X, ซึ่งในที่นี้มีค่า '0.991589'

การตัดสินใจว่ามีปัญหาหรือไม่ หากตัวแปรคู่ใดมีก่าสหสัมพันธ์สูง แสดงว่าทั้งสองมีความสัมพันธ์ ก่อนข้างสูง และเกิดปัญหา High Multicollinearity แต่ปัญหาคือว่าก่าสหสัมพันธ์เท่าใดที่เราถือว่า ก่อนข้างสูง (ดำราบางเล่มระบุว่า 0.8) อย่างไรก็ตามก่าสหสัมพันธ์ที่ต่ำก็ไม่ได้แสดงว่าเราไม่มีปัญหา Multicollinearity เราด้องพิจารณา Auxiliary Regression โดยการ Run Regression ตัวแปรอธิบายตัว ใดตัวหนึ่งกับตัวแปรอธิบายที่เหลือ แล้วทดสอบนัยสำคัญรวมของ Auxiliary Regression ด้วยตัวสถิดิ F หากก่า F สูงกว่า Critical F แสดงว่าตัวแปรอธิบายนั้นมีความสัมพันธ์กับด้วแปรอธิบายอื่น (Multicollinearity)

4. ปัญหา Heteroscedasticity

เราจะอธิบายการตรวจสอบและการบรรเทาปัญหา heteroscedasticity โดยใช้ตัวอย่างในบทที่ 11 ใน Gujarati(2003) โดยเริ่มด้วยตัวอย่างที่ 11.11 ซึ่งใช้ข้อมูลในตารางที่ 11.1 (table11.1.wf1)

ตัวอย่างดังกล่าวศึกษาความสัมพันธ์ระหว่าง *ค่าตอบแทนเฉลี่ย* (AVECOMP) กับ ค่าคงที่ และ *ผลิตภาพเฉลี่ย* (AVEPROD) ได้ผลการประมาณค่าดังตารางข้างล่าง

Dependent Variable: AVECOMP Method: Least Squares Date: 01/26/04 Time: 01:49 Sample: 1 9 Included observations: 9							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C 1992.062 936.6123 2.126880 AVEPROD 0.232999 0.099853 2.333428							
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.437520 0.357166 337.2744 796278.0 -64.02760 0.616592	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)		4161.778 420.6625 14.67280 14.71663 5.444885 0.052349			

4.1 การตรวจสอบปัญหา Heteroscedasticity ด้วยรูปภาพ

การตรวจสอบด้วยรูปภาพ เราพยายามที่จะพิจารณาว่า residual มีรูปแบบที่จะสะท้อนว่าเกิด ปัญหา Heteroscedasticity หรือไม่ เช่น (ก) residual มีการเบี่ยงเบนออกจาก sample regression line มาก ขึ้นเมื่อตัวแปรอธิบายมีค่าเพิ่มขึ้น (หรือลดลง) หรือไม่ หรือ (ข) residual² ซึ่งสะท้อนถึง ค่าความ แปรปรวนของ residual ณ ระดับตัวแปรอธิบายต่างๆ มีค่าแปรผันตามตัวแปรอธิบายหรือไม่

ขั้นตอนที่ 1. สร้างชุดข้อมูลของ residual โดยเลือก Proc/Make Residual Series.. ในเมนูของสมการ แล้ว save อยู่ในชื่อ 'UHAT'

ขั้นตอนที่ 2. สร้างกลุ่มข้อมูลระหว่าง UHAT กับ AVEPROD

ขั้นตอนที่ 3. สร้าง scatter diagram โดยเลือก View/Graph/Scatter/Simple Scatter ได้ scatter diagram เพื่อตรวจสอบปัญหา heteroscedasticity ดังรูป

เนื่องจากตัวอย่างนี้มีจำนวนตัวอย่างไม่ก่อยมากจึงอาจไม่เห็นรูปแบบที่ชัดเจนนัก หากตัวอย่างมี ขนาดใหญ่และสังเกตเห็นว่า Residual ที่ plot มีรูปแบบดังรูปด้านขวามือ ให้สงสัยว่าอาจเกิดปัญหา Heteroscedasticity

ขั้นตอนที่ 4. หากต้องการให้ UHAT อยู่ในรูปยกกำลังสอง (ซึ่งจะเป็น proxy ของVariance ของ error term) ให้สร้าง series 'UHAT_SQ' ขึ้นใหม่ โดยเลือก Quick/Generate Series... แล้วใส่ "UHAT_sq=UHAT^2" ในกล่อง Generate Series แล้ววาครูปหาความสัมพันธ์ระหว่าง UHAT_SQ กับ Aveprod เช่นเดียวกับขั้นตอนที่ 2 และ 3 จะได้

จากรูปเส้นตรงที่ลากขึ้นแสดงความสัมพันธ์ ระหว่าง Residual² (UHAT_SQ) กับ AVEPROD ซึ่ง ไม่มีความสัมพันธ์กัน คือเมื่อ AVEPROD เพิ่มขึ้น Variance ของ Residual (ซึ่งเป็น Proxy ของ Variance ของ Error term) มีค่าค่อนข้างคงที่ (ประมาณ 100000) แสดงให้เห็นว่าไม่น่าจะมีปัญหา Heteroscedasticity

อย่างไรก็ตาม การตรวจสอบปัญหาด้วยวิธี ดังกล่าวเป็นการตรวจสอบคร่าวๆ จำเป็นต้อง ตรวจสอบด้วยวิธีอื่นด้วย

4.2 การตรวจสอบปัญหา Heteroscedasticity ด้วย Park test (จากตัวอย่างที่ 11.1)

ขั้นตอนที่ 1. ประมาณค่าสมการถดถอยเชิงเส้น และสร้างชุดข้อมูล residual ตามขั้นตอนที่ 1 ในหัวข้อ 4.1 ขั้นตอนที่ 2. เลือก Objects/New Objects/Equation ในเมนูหลัก แล้วใส่รูปแบบของสมการที่ใช้ทดสอบ คือ 'log(UHAT^2) C log(AVEPROD)' ใน Equation Specification

Dependent Variable: L Method: Least Square Date: 01/26/04 Time: Sample: 1 9 Included observations:	OG(UHAT^2) s 01:52 9			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	35.82684	38.32272	0.934872	0.3810
LOG(AVEPROD)	-2.802022	4.196134	-0.667763	0.5257
R-squared	0.059886	Mean dependent var		10.23844
Adjusted R-squared	-0.074416	S.D. dependent var		1.414819
S.E. of regression	1.466517	Akaike info criterion		3.796787
Sum squared resid	15.05470	Schwarz criterion		3.840615
Log likelihood	-15.08554	F-statistic		0.445907
Durbin-Watson stat	1.137101	Prob(F-statistic)		0.525681

ขั้นตอนที่ 3. ทคสอบนัยสำคัญของก่าสัมประสิทธิ์กวามชันสมการดังกล่าว

จากผลการประมาณค่า เราตรวจสอบว่าสัมประสิทธิ์หน้าตัวแปรอธิบายมีนัยสำคัญเชิงสถิติ หรือไม่ ซึ่งถ้ามีนัยสำคัญเชิงสถิติแสดงว่ามีปัญหา Heteroscedasticity จากตัวอย่าง หากเราเลือกระดับ นัยสำคัญที่ 0.05 ค่าสัมประสิทธิ์หน้าตัวแปร LOG(AVEPROD) ไม่มีนัยสำคัญเชิงสถิติ แสดงว่าการศึกษา ข้างต้นไม่มีปัญหา Heteroscedasticity

4.3 การตรวจสอบปัญหา Heteroscedasticity ด้วย Goldfeld-Quandt test (ตัวอย่างที่ 11.4)

ใช้ข้อมูลตารางที่ 11.3 โดยเปิด workfile ชื่อ 'table11.3.wf1' แล้วคำเนินการทดสอบดังนี้

ขั้นตอนที่ 1. สร้างข้อมูลชุคใหม่เพื่อที่จะรักษาข้อมูล ชุคเดิมไว้ โดย คลิกขวาที่ตัวแปร X แล้วเลือก Object copy.. เพื่อ copy เป็นข้อมูลชุคโดยใส่ RX ในช่อง Destination (แล้วทำเช่นเดียวกันกับข้อมูล Y) ขั้นตอนที่ 2. เรียงข้อมูลตามตัวแปรอธิบายคือ 'RX'

โดยเลือก Proc/Sort Series... ในเมนู workfile แล้วใส่ ชุดข้อมูลที่เราต้องการเรียง โดยใส่ชุดข้อมูลที่เป็นหลัก ก่อน เช่น rx ry (เรียงตาม ตาม rx) จากนั้นกี คลิก OK

Object Copy	×
Source x	OK
Destination	Cancel

Workfile: TABLE11.3 - (e:\ec.	Sort Workfile Series	
View Sample Rani Change Workfile Range Sam Generate Series Sort Series Extract to New Workfile re Extract to New Workfile ry Import Import Export uhat Import	Sort key(s) (one or more series) rx ry Sort order Ascending Descending	OK Cancel

ขั้นตอนที่ 3. ประมาณค่าสมการเชิงถุดถอยระหว่าง RY กับ C และ RXของข้อมูลชุดที่ความแปรปรวน น้อย โดยในช่อง Sample เราจำกัดเพียงตัวอย่างที่ 1-13 เราจะได้ค่า RSS₁ จาก ช่อง Sum squared resid = 377.1663

Equation Specification	
Equation specification Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	
IV C IX	~
Estimation settings Method: LS - Least Squares (NLS and ARMA)	ОК
Sample: 113	Cancel Options

ขั้นตอนที่ 3. ประมาณค่าสมการเชิงถุดถอยระหว่าง RY กับ C และ RXของข้อมูลชุดที่ความแปรปรวนมาก โดยในช่อง Sample เราจำกัดเพียงตัวอย่างที่ 18-30 เราจะได้ก่า RSS₂ จาก ช่อง Sum squared resid = 1536.8

ขั้นตอนที่ 4. คำนวณก่าสถิติ $\lambda = \frac{RSS_2 / df}{RSS_1 / df} = \frac{1536.8}{377.17} = 4.07$ แล้วทคสอบด้วย F-test

หากค่า λ (=4.07)> Critical F_{0.05,13,13} (=2.55) แสดงว่า เราเผชิญกับปัญหา Heteroscedasticity

4.4 การตรวจสอบปัญหา Heteroscedasticity ด้วย White's test

ใช้ข้อมูลจากตารางที่ 11.3 ใน Gujarati (2003) ขั้นตอนที่ 1. ประมาณค่าสมการถดถอยเชิงเส้น ระหว่าง Y กับ C และ X

ขั้นตอนที่ 2. เพื่อตรวจสอบ

โดยวิธีของ White เลือก View/Residual Tests/White Heteroskedasticity(cross term) ในเมนูของสมการ [ในการทดสอบดังกล่าว สามารถเลือกรูปแบบได้ 2 รูปแบบ คือ มีพจน์ที่ตัวแปร อธิบายดูณกัน (cross term) หรือไม่มีก็ได้ (no cross term)]

Equation: UNTITLED	Workfile: TABLE11.3
Representations Estimation Output Actual,Fitted,Residual Gradients and Derivatives Covariance Matrix Coefficient Tests	re Freeze Estimate Forecast Stats Resids
Residual Tests	Correlogram - Q-statistics
Stability Tests	 Correlogram Squared Residuals
Label C	Histogram - Normality Test Serial Correlation LM Test ARCH LM Test
R-squared Adjusted R-squared	0 White Heteroskedasticity (no cross terms) 0 White Heteroskedasticity (cross terms)

โดยผลการทดสอบแสดงในตารางข้างล่าง

White Heteroskedasticity Test:				
F-statistic	2.917301	Probability		0.071274
Obs*R-squared	5.330902	Probability		0.069568
Test Equation: Dependent Variable: R Method: Least Square Date: 01/28/04 Time: Sample: 1 30 Included observations:	ESID*2 s 01:27 30			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-12.29621	191.7731	-0.064119	0.9493
X	0.197385	2.368760	0.083329	0.9342
X*2	0.001700	0.006707	0.253503	0.8018
R-squared	0.177697	Mean dependent var		78.70511
Adjusted R-squared	0.116785	S.D. dependent var		112.5823
S.E. of regression	105.8043	Akaike info criterion		12.25570
Sum squared resid	302252.7	Schwarz criterion		12.39582
Log likelihood	-180.8355	F-statistic		2.917301
Durbin-Watson stat	0.791307	Prob(F-statistic)		0.071274

ขั้นตอนที่ 4. นำค่าตัวสถิติ nR² ซึ่ง EViews ได้คำนวณไว้ในแถบสีฟ้า เพื่อในการทดสอบ White กับ critical χ^2 ซึ่งค่าดังกล่าวสามารถหาได้โดยใช้ EViews โดยพิมพ์คำสั่ง "=@qchisq(.95,2)" ในช่องคำสั่ง สีขาว โดยที่ .95 คือ 1- ระดับนัยสำคัญที่ต้องการ และ 2 คือ degree of freedom (จำนวนตัวแปรอธิบายใน สมการ ที่ใช่ทดสอบ White) จะได้ค่า critical χ^2 ในมุมซ้ายล่างของหน้าจอ <u>Scalar = 5.99146454711</u> พบว่าค่า nR² < critical χ^2 จึงไม่สามารถปฏิเสธสมมุติฐานที่ว่า "ไม่มี ปัญหา heteroscedasticity ได้" หรือเราสามารถตรวจสอบได้จากก่า Probability ก็ได้ พบว่า ก่า P-value = 0.069568 (> นัยสำคัญที่เราเลือกคือ 0.05)

4.5 การบรรเทาปัญหา Heteroscedasticity ด้วย Weighted Least Square(WLS) (ตัวอย่างที่ 11.7)

ใช้ข้อมูลตารางที่ 11.1 เพื่อประมาณค่าสมการระหว่างค่าจ้างเฉลี่ย(AVECOMP) กับขนาดแรงงาน (EXPSIZE) ในกรณีดังกล่าวเราทราบว่ามีปัญหา heteroscedasticity และทราบค่าความเบี่ยงเบนมาตรฐาน ของแต่ละตัวอย่างเราสามารบรรเทาปัญหาโดยใช้ WLS ซึ่งสามารถสั่งโปรแกรมได้สองวิธีคือ วิธีที่หนึ่ง ในการสร้างสมการถดถอย ในช่อง Equation Specification ใส่รูปแบบเหมือนสมการที่ 11.6.1 คือ 'AVECOMP/STDEV 1/STDEV EMPSIZE/STDEV' แล้วคลิก OK จะได้ผลดังตารางข้างล่าง

Dependent Variable: A Method: Least Square: Date: 01/28/04 Time: Sample: 1 9 Included observations:	VECOMP/STI s 01:55 9	DEV		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
1/STDEV	3406.213	80.92452	42.09123	0.0000
EMPSIZE/STDEV	154.2425	16.94475	9.102671	0.0000
R-squared	0.964435	Mean depen	dent var	4.376112
Adjusted R-squared	0.959354	S.D. depend	ent var	0.670698
S.E. of regression	0.135218	Akaike info o	criterion	-0.970720
Sum squared resid	0.127988	Schwarz crit	erion	-0.926892
Log likelihood	6.368239	Durbin-Wats	on stat	1.184707

วิธีการที่สอง

ขั้นตอนที่ 1. ในช่อง Equation Specification ก็ใส่ตัวแปรตามปกติ คือ AVECOMP C EMPSIZE แล้ว

เลือก Options

Equation Specification	×
Equation specification Dependent variable followed by list of regressors including ARM and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	1A
AVECOMP C EMPSIZE	~
Estimation settings Method: LS - Least Squares (NLS and ARMA)	ОК
Sample: 19	Options

ขั้นตอนที่ 2. จะปรากฎหน้าต่าง Equation Options ขึ้นมา ให้คลิกที่ ช่อง ^{IV} Weighted LS/TSLS แล้ว ใ ส่ ตั ว ถ่ ว ง น้ำ ห นั ก ซึ่ง ก็ คือ '1/STDEV' ในช่อง Weight แล้ว คลิก OK จะทำให้กลับมาสู่หน้าต่าง Equation Specification แล้วคลิก OK อีกครั้ง จะได้ผลการประมาณ ค่าดังตารางข้างล่าง ซึ่งค่าสัมประ สิท ธ์ ข อ ง ตั ว แ ป ร อ ธิ บ า ย ก็ จะ เหมือนกับวิธีการที่หนึ่ง

Dependent Variable: AVECOMP Method: Least Squares Date: 01/28/04 Time: 02:05 Sample: 1 9 Included observations: 9 Weighting series: 1/STDEV					
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C EMPSIZE	3406.213 154.2425	80.92452 16.94475	42.09123 9.102671	0.0000 0.0000	
Weighted Statistics					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.964435 0.959354 126.6394 112262.8 -55.21163 1.184707	Mean dependent var4090S.D. dependent var628.Akaike info criterion12.7Schwarz criterion12.7F-statistic82.8Prob(F-statistic)0.00		4098.466 628.1452 12.71370 12.75752 82.85861 0.000040	
	Unweighted S	Statistics			
R-squared0.935613Mean dependent var4161.77Adjusted R-squared0.926415S.D. dependent var420.662S.E. of regression114.1114Sum squared resid91149.9Durbin-Watson stat1.1421761.142176					

4.6 การบรรเทาปัญหา Heteroscedasticity ด้วย White's heteroscedasticity corrected standard error

ขั้นตอนที่ 1. ประมาณค่าสมการถคถอยโคยในช่อง Equation

Specification ก็ใส่ตัวแปรตามปกติ คือ AVECOMP C EMPSIZE แล้ว เลือก Options

ขั้นตอนที่ 2. จะปรากฏหน้าต่าง Equation Options ขึ้นมา ให้คลิกที่ช่อง และเลือกวิธีการของ White แล้ว

กลิก OK จะทำให้กลับมาสู่หน้าต่าง Equation Specification แล้วกลิก OK อีกครั้ง จะได้ผลการประมาณก่า

ดังตารางข้างถ่าง

Dependent Variable: A Method: Least Square Date: 01/28/04 Time: Sample: 1 9 Included observations: White Heteroskedastic	VECOMP s 02:17 9 city-Consistent	: Standard Errors & Covari	ance
Variable	Coefficient	Std. Error t-Statistic	Prob.
C	3417.778	107.1010 31.91173	0.0000
EMPSIZE	148.8000	16.86644 8.822253	0.0000
R-squared	0.938425	Mean dependent var	4161.778
Adjusted R-squared	0.929628	S.D. dependent var	420.6625
S.E. of regression	111.5918	Akaike info criterion	12.46070
Sum squared resid	87169.16	Schwarz criterion	12.50453
Log likelihood	-54.07316	F-statistic	106.6823
Durbin-Watson stat	1.223659	Prob(F-statistic)	0.000017

เมื่อเปรียบเทียบค่า standard deviation (s.d.) กับสมการที่ไม่ได้มีการแก้ไขปัญหา heteroscedasticity (ตารางข้างถ่าง) พบว่าค่าสัมประสิทธิ์เท่ากัน แต่ s.d กรณีไม่ได้แก้ไขมีค่าน้อยกว่าทำให้ค่า t สูง ในขณะที่ s.d. ของ White's heteroscedasticity corrected standard error มีค่าสูงขึ้นและลดขนาดของค่า t ทำให้การ ทดสอบน่าเชื่อถือขึ้น (ตัวอย่างนี้อาจเห็นไม่ค่อยชัดเจนเนื่องจากค่า t สูงด้วยกันทั้งคู่)

Dependent Variable: A Method: Least Square Date: 01/28/04 Time: Sample: 1 9 Included observations:	VECOMP s 02:16 9		
Variable	Coefficient	Std. Error t-Statistic	Prob.
C	3417.778	81.06958 42.15857	0.0000
EMPSIZE	148.8000	14.40644 10.32871	0.0000
R-squared	0.938425	Mean dependent var	4161.778
Adjusted R-squared	0.929628	S.D. dependent var	420.6625
S.E. of regression	111.5918	Akaike info criterion	12.46070
Sum squared resid	87169.16	Schwarz criterion	12.50453
Log likelihood	-54.07316	F-statistic	106.6823
Durbin-Watson stat	1.223659	Prob(F-statistic)	0.000017

Heteroskedasticity Consistent Coefficient Covariance White Newey-West

5. ปัญหา Autocorrelation

เราจะอธิบายการตรวจสอบและการบรรเทาปัญหา Autocorrelation โดยใช้ตัวอย่างในบทที่ 12 ใน Gujarati (2003) โดยเริ่มด้วยตัวอย่างในหัวข้อ 12.5 (Gujarati, 2003, หน้า 460) ซึ่งใช้ข้อมูลในตารางที่ 12.4 (table12.4.wf1)

ตัวอย่างดังกล่าวศึกษาความสัมพันธ์ระหว่าง Real Compensation(Y) กับ Productivity(X) โดย เลือกแบบจำลองที่มีจุดตัด และได้ผลการประมาณค่าดังตารางข้างล่าง

Dependent Variable: Y Method: Least Squares Date: 02/04/04 Time: Sample: 1959 1998 Included observations:	s 02:34 40			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X	29.51925 0.713659	1.942347 0.024105	15.19773 29.60658	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.958449 0.957356 2.675533 272.0220 -95.09761 0.122904	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	dent var lent var criterion terion stic)	85.64500 12.95632 4.854881 4.939325 876.5495 0.000000

5.1 การตรวจสอบปัญหา Autocorrelation ด้วยรูปภาพ

🕸 การ plot residual กับเวลา

ขั้นตอนที่ 1. หลังจากนั้นเราก็สร้างชุดข้อมูลของ residual โดย เลือก Proc/Make Residual Series.. ในเมนูของสมการ แล้ว save อยู่ในชื่อ 'res1' เราจะได้กราฟแสดงค่า residual ของแต่ละ ตัวอย่าง ดังรูปข้างขวามือ(เหมือนกับรูปที่ 12.8)

หรือเราอาจจะเลือก View/Actual,Fitted,Residual/Residual

Graph ในเมนูของสมการ จะได้รูปข้างล่างซึ่งเหมือนกับรูปที่ 12.8 ซึ่งแสดงว่าแบบจำลองมีแนวโน้มที่จะ เกิดปัญหา Positive Autocorrelation (ในทางตรงข้าม หาก residual สลับกันอยู่ในด้านบวกและลบค่อนข้าง ถี่ในลักษณะพื้นปลา แบบจำลองดังกล่าวมีแนวโน้มที่จะเกิดปัญหา Negative Autocorrelation)

🕸 การ plot residual กับ residual ในปีที่ติดกัน

เราอาจ plot กราฟระหว่าง residual ในช่วงเวลาที่ติดกันได้ โดยเขียนกำสั่งในช่องกำสั่งว่า "graph gr1.scat res1(-1) res1" โดยที่กำสั่งดังกล่าวหมายความว่า "[สร้าง graph] [ชื่อ กราฟ].[ชนิดกราฟ] [ตัวแปร] [ตัวแปร]" จะได้กราฟดังรูป ขวามือ (เหมือนกับรูปที่ 12.9) ซึ่งแสดงให้เห็นว่า Residual ในช่วงเวลาที่ติดกันหนึ่งช่วงเวลามีความสัมพันธ์เชิงบวก หรือ Positive Autocorrelation (ในทางตรงข้าม หาก กราฟ ระหว่าง residual ในช่วงเวลาที่ติดกัน มีแนวโน้มของความ ชันเป็นลบแสดงว่า เกิดปัญหา Negative Autocorrelation)

5.2 การตรวจสอบปัญหา Autocorrelation ด้วย Durbin-Watson d stat

ในผลการประมาณค่าสมการถดถอย โปรแกรม EViews จะคำนวณค่า Durbin-Watson d stat ให้ เสมอ โดยจะปรากฏอยู่ในช่อง Durbin-Watson stat จากตัวอย่างข้างต้น พบว่าแบบจำลองมีค่า Durbin-Watson stat เท่ากับ 0.122904 เรานำค่าที่คำนวณได้มาเปรียบเทียบกับ critical d_L กับ d_U จากตาราง Durbin-Watson โดยที่ n=40, k(จำนวนตัวแปรอธิบาย)=1 ซึ่ง d_L =1.44 กับ d_U =1.54 พบว่าจากค่า DW d stat = 0.1229 < d_L(1.44) เราสามารถปฏิเสธสมมุติฐานว่างที่ว่า "ไม่มี positive autocorrelation" หรือแบบจำลอง ดังกล่าวมีปัญหา positive autocorrelation นั่นเอง

5.3 การตรวจสอบปัญหา Autocorrelation ด้วย Breusch-Godfrey (BG) Test

้ขั้นตอนที่ 1. ประมาณค่าสมการถคถอย แล้วสร้าง residual ชื่อว่า "res1"

ขั้นตอนที่ 2. ประมาณค่าสมการถดถอยระหว่าง residual กับ ตัวแปรอธิบาย และ lagged ของ residual โดย ใส่ "**res1 c x res1(-1 to -6)**" ในช่อง Equation Specification [(-1 to -6) หมายถึง lagged ที่ 1 ถึง 6] จะ ได้ผลการประมาณค่าดังตารางข้างล่าง

าณ 40- 28 ป	Dependent Variable: RES1 Method: Least Squares Date: 02/05/04 Time: 21:26 Sample(adjusted): 1965 1998 Included observations: 34 after adjusting endpoints					
ทั่ว	Variable	Coefficient	Std. Error	t-Statistic	Prob.	
ที่	C X	5.590462 -0.066605	1.963603 0.023469	2.847043 -2.838058	0.0085 0.0087	
เ บ	RES1(-1) RES1(-2)	0.814971 -0.268651	0.216231 0.273887	3.768978 -0.980882	0.0009 0.3357	
)	RES1(-3)	-0.106017	0.272780	-0.388652	0.7007	
ÍÐ	RES1(-4) RES1(-5)	-0.064375	0.273258	-0.229438	0.2736	
ค่า	RES1(-6)	0.216156	0.222160	0.972976	0.3395	
of	R-squared Adjusted R-squared	0.892012 0.862938	Mean depen S.D. depend	dent var lent var	0.578821 2.411439	
ρ)						

ทุกตัวเท่ากับศูนย์ หรือมีค่า coefficient of autocorrelation บางตัวไม่เท่ากับศูนย์นั่นเอง

นอกจากนี้ใน โปรแกรม EViews ได้สร้าง กำสั่งที่ใช้ทดสอบปัญหา Autocorrelation ด้วย BG test โดยที่เราทดสอบได้โดยการ เ ถื อ ก View/Residual Tests/Serial Correlation LM Test... แล้วเลือกจำนวน lag ของ Residual ที่จะใช้ ทดสอบ (p) แล้วคลิก OK จะ

Equation: EQ01 Wo	rkfile: TABLE12.4
Representations	ne Freeze Estimate Forecast Stats Resids
Actual,Fitted,Residual	•
Gradients and Derivatives Covariance Matrix	• 4
Coefficient Tests	•
Residual Tests	Correlogram - Q-statistics
Stability Tests	 Correlogram Squared Residuals
Labal	Histogram - Normality Test
	Serial Correlation LM Test
^	ARCH LM Test
R-squared Adjusted R-squared	0 White Heteroskedasticity (no cross terms) 0 White Heteroskedasticity (cross terms)

ใด้ผลตามตารางข้างล่าง ซึ่งได้คำนวณตัวสถิติ (n-p)R² และค่า P-value ของตัวสถิติดังกล่าวเพื่อใช้ เปรียบเทียบกับระดับนัยสำคัญที่เลือก โดยที่ไม่ต้องเปิดตาราง โดยที่หากค่า P-value ต่ำกว่า ระดับ นัยสำคัญที่เลือกเช่น 0.05 แสดงว่าเราเผชิญกับปัญหา Autocorrelation

Breusch-Godfrey Serial Correlation LM Test:						
F-statistic	23.01054	Probability		0.000000		
Obs*R-squared	32.47339	Probability		0.000013		
Test Equation: Dependent Variable: RESID Method: Least Squares Date: 02/05/04 Time: 21:28 Presample missing value lagged residuals set to zero.						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C	0.140995	1.007706	0.139917	0.8896		
X	-0.002318	0.012893	-0.179767	0.8585		
RESID(-1)	1.003107	0.182609	5.493200	0.0000		
RESID(-2)	-0.088115	0.257674	-0.341963	0.7346		
RESID(-3)	-0.076036	0.258113	-0.294585	0.7702		
RESID(-4)	0.199826	0.258333	0.773520	0.4449		
RESID(-5)	-0.107547	0.261060	-0.411963	0.6831		
RESID(-6)	-0.059385	0.198127	-0.299734	0.7663		
R-squared	0.811835	Mean dependent var		-5.76E-15		
Adjusted R-squared	0.770674	S.D. dependent var		2.641008		

5.4 การบรรเทาปัญหาวิชีการ First-Difference Method

ภายใต้ข้อสมมุติที่ว่า error term มีลักษณะเป็น AR(1) เราสามารถบรรเทาปัญหา Autocorreation ใด้โดยประมาณค่าสมการ $\Delta Y_r = \beta_2 \Delta X_r + \epsilon_r$ ดังสมการ (12.9.7) สำหรับการใส่รูปแบบของ function ใน coefficient of autocovariane [ในโปรแกรม EViews d() จะหมายถึง difference ของตัวแปรดังกล่าว] จะได้ผลการประมาณค่าดังตารางข้างล่าง เหมือนดังสมการ 12.9.9 และค่า Durbin-Watson stat เพิ่มขึ้น จน อยู่ในช่วงที่เราไม่สามารถปฏิเสธสมมุติฐานว่างที่ว่า "ไม่มี positive autocorrelation"

Dependent Variable: D(Y) Method: Least Squares Date: 02/05/04 Time: 21:39 Sample(adjusted): 1960 1998 Included observations: 39 after adjusting endpoints						
Variable Coefficient Std. Error t-Statistic Prob.						
D(X)	0.719956	0.078194	9.207333	0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.361092 0.361092 0.937901 33.42701 -52.33175	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Durbin-Watson stat		1.194872 1.173378 2.734962 2.777617 1.509651		

5.5 การบรรเทาปัญหา Autocorrelation ด้วย Generalized Least Square (GLS) โดยใช้ coefficient of autocovariane (*p*) จาก Residual

ขั้นตอนการประมาณค่าโดยใช้ GLS คือ

- แปลงค่าตัวแปรโดยคำนึงถึงปัญหา Autocorrelation (หากไม่ทราบค่า coefficient of autocorrelation (*ρ*) ก็ต้องประมาณขึ้นมา
- 2) ประมาณค่าตัวแปรที่แปลงค่าด้วย OLS

เพื่อบรรเทาปัญหา Autocorrelation เราสามารถใช้การประมาณก่าด้วย Generalized Least Square (GLS) แต่เราไม่ทราบก่า coefficient of autocorrelation (*p*) เราจำเป็นต้องกำนวณก่าดังกล่าวก่อน ซึ่งในข้อ นี้ใช้การประมาณ ก่าของ

residual

ขั้นตอนที่ 1. ประมาณค่า สมการถดถอยด้วยรูปแบบ "res1 res1(-1)" ได้ผลตาม ตารางข้างขวามือ และ ρ =0.914245

ขั้นตอนที่ 2. แปลงตัวแปร X และ Y ให้อยู่ในรูป $Y^* = (Y_t - \rho Y_{t-1})$ และ $X^* = (X_t - \rho X_{t-1})$

Depend	Dependent Variable: RES1						
Method	Method: Least Squares						
Date: 0	Date: 02/05/04 Time: 21:41						
Sample	Sample(adjusted): 1960 1998						
Include	Included observations: 39 after adjusting endpoints						
Variable Coefficient Std. Error t-Statistic Pro							
F	RES1(-1)	0.914245	0.056337	16.22811	0.0000		
R-squa	red	0.873615	Mean dependent var		0.120615		
Adjuste	ed R-squared	0.873615	S.D. dependent var		2.561492		
S.E. of	regression	0.910629	Akaike info criterion		2.675945		
Sum so	quared resid	31.51134	Schwarz criterion		2.718600		
Log like	elihood	-51.18093	Durbin-Watson stat		1.472987		

โดยเลือก Quick/Generate Series... ใส่ "YSTAR=Y-0.914245*Y(-1)" ลงในช่องว่างแล้วคลิก OK จะได้

series YSTAR ขึ้นมา (สร้าง series XSTAR ด้วยวิชีการ เดียวกัน)

ขั้นตอนที่ 3. ประมาณ ค่า สมการถดถอยระหว่าง YSTAR กับ XSTAR จะได้ผล การประมาณค่าดังตารางข้าง ขวามือ และจากการสังเกต Durbin-Watson stat พบว่า สมการดังกล่าวไม่มีปัญหา Autocorrelation แล้ว

Dependent Variable: YSTAR Method: Least Squares Date: 02/05/04 Time: 21:51 Sample(adjusted): 1960 1998 Included observations: 39 after adjusting endpoints							
Variable	Variable Coefficient Std. Error t-Statistic Prob.						
C	4.108209	0.656933	6.253621	0.0000			
XSTAR	0.528896	0.077424	6.831186	0.0000			
R-squared	0.557761	Mean dependent var		8.496580			
Adjusted R-squared	0.545808	S.D. dependent var		1.273241			
S.E. of regression	0.858085	Akaike info criterion		2.581693			
Sum squared resid	27.24346	Schwarz criterion		2.667004			
Log likelihood	-48.34301	F-statistic		46.66510			
Durbin-Watson stat	1.620601	Prob(F-statistic)		0.000000			

5.6 การบรรเทาปัญหา Autocorrelation ด้วย Generalized Least Square (GLS) โดยใช้ Iterative method of estimating ho ด้วยวิชี Cochrane-Orcutt procedure

การประมาณค่า Coefficient of autocorrelation (ρ) ในข้อ 5.5 เป็นการประมาณเพียงครั้งเดียว แต่ วิธีการ Cochrane-Orcutt จะประมาณค่า ρ ด้วยกระบวนการซ้ำๆ (Iterative)

เราให้สมการตั้งต้น 'Y C X' ในหน้า 26 เป็น สมการ 'eq01'

ขั้นตอนที่ 1: ประมาณก่า ho เหมือนกับหัวข้อที่แล้ว และเราให้ save สมการดังกล่าวในชื่อ 'eq02' เราจะ ได้ก่า ho เริ่มต้น คือ 0.914245

ขั้นตอนที่ 2: ประมาณค่าสมการซึ่งผนวกปัญหา autocorrelation เข้าไปแล้ว (YSTAR กับ XSTAR) ด้วย การระบุสมการเป็น 'y-eq02.@coefs(1)*y(-1) c x-eq02.@coefs(1)*x(-1)' ดังรูปข้างล่าง แล้วคลิก OK จะได้สมการที่แก้ปัญหาแล้วดังหน้าที่แล้ว

Equation Specification	
Equation specification Dependent variable followed by list of regressors including ARM and PDL terms, OR an explicit equation like Y=c(1)+c(2)*X.	IA
y-eq02.@coefs(1)*y(-1) c x-eq02.@coefs(1)*x(-1)	~
Estimation settings	ОК
Sample: 1959 1998	Cancel
	Options

ขั้นตอนที่ 3: สร้าง residual series ขึ้นมาใหม่จากสมการข้างด้น โดยพิมพ์ 'series resid1=y-(eq03.@coefs(1)/(1-eq02.@coefs(1))+eq03.@coefs(2)*x)' ในช่องคำสั่ง แล้ว Enter จะปรากฏ รป ____RESID1 successfully computed. ในช่องมมซ้ายล่าง

ขั้นตอนที่ 4: Run สมการ eq02, eq03 และสร้าง residual series ขึ้นใหม่ โดย

- (1) เปิดสมการ eq02 ขึ้นมาแล้วคลิก Estimate และ OK
- (2) เปิดสมการ eq03 ขึ้นมาแล้วคลิก Estimate และ OK
- (3) series resid1=y-(eq03.@coefs(1)/(1-eq02.@coefs(1))+eq03.@coefs(2)*x)

แล้วข้อนกลับไปยัง (1) ใหม่ จนกระทั่ง ค่า ho (ค่าสัมประสิทธิ์ของ resid1 ในสมการ eq02 ไม่ค่อย เปลี่ยนแปลง เช่น น้อยกว่า 0.001 เราจะได้ค่า hoเท่ากับ 0.8979 แล้ว

ขั้นตอนที่ 5: ใช้ค่า ho ดังกล่าวในการประมาณก่าสมการระหว่าง YSTAR กับ XSTAR ดังเช่นขั้นตอนที่ 3 ในข้อ 5.5

5.7 วิธีการ Newey-West เพื่อแก้ไข Standard Error ของ OLS

ขั้นตอนที่ 1. ประมาณค่าสมการถดถอยโดยในช่อง Equation Specification ก็ใส่ตัวแปรตามปกติ คือ Y C

X แล้วเลือก Options

้ขั้นตอนที่ 2. จะปรากฏหน้าต่าง Equation Options ขึ้นมา ให้คลิกที่ช่อง Heteroskedasticity Consistent Coefficient Covariance และเลือกวิธีการ ของ Newey-West แล้วคลิก OK จะทำให้กลับมาสู่หน้าต่าง Equation Specification แล้วคลิก OK อีกครั้ง จะได้ผลการประมาณค่าดังตาราง

LS & TSLS options Heteroskedasticity Consistent Coefficient Covariance White Newey-West

ข้างถ่าง

Dependent Variable: Y Method: Least Squares Date: 02/04/04 Time: 02:53 Sample: 1959 1998 Included observations: 40 Newey-West HAC Standard Errors & Covariance (lag truncation=3)						
Variable Coefficient Std. Error t-Statistic Prob						
C	29.51925	4.118072	7.168223	0.0000		
X	0.713659	0.051281	13.91661	0.0000		
R-squared	0.958449	Mean dependent var		85.64500		
Adjusted R-squared	0.957356	S.D. dependent var		12.95632		
S.E. of regression	2.675533	Akaike info criterion		4.854881		
Sum squared resid	272.0220	Schwarz criterion		4.939325		
Log likelihood	-95.09761	F-statistic		876.5495		
Durbin-Watson stat	0.122904	Prob(F-statistic)		0.000000		

เมื่อเปรียบเทียบค่า standard error (Std. Error) กับสมการที่ไม่ได้มีการแก้ไขปัญหา Autocorrelation (ตารางหน้า 27) พบว่าค่าสัมประสิทธิ์และ R² เท่ากัน แต่ standard error. กรณีไม่ได้แก้ไขมีค่าน้อยกว่าทำ ให้ค่า t สูง ในขณะที่ standard error ของ Newey-West method for correcting standard error มีค่าสูงขึ้น และสดขนาดของค่า t แสดงว่า standard error ของ OLS underestimate true standard error บางคนอาจ สังเกตเห็นว่า ค่า Durbin-Watson ของสมการ Newey-West method มีค่าเท่ากับ OLS แต่ไม่ต้องกังวล เพราะวิธีการ Newey-West ได้แก้ไขปัญหา Autocorrelation เรียบร้อยแล้ว